ON PERIODIC ALMOST DOUBLY ASYMPTOTIC SOLUTIONS OF THE BOUNDED CIRCULAR THREE-BODY PROBLEM *

S. L. ZIGLIN

In the course of investigating by numerical integration methods the solutions of the bounded, circular three-body problem doubly asymptotic with respect to the rectilinear libration points $L_{1}, 2,3$. it was found that a periodic solution always exists near the doubly asymptotic solution, and a problem of establishing an analytic relationship between such solutions was therefore formulated (**).

Below, a theorem is proved from which it follows that a periodic solution exists in any neighborhood of a solution of the bounded, circular three-body problem, doubly asymptotic with respect to the rectilinear libration point.

Let U be a region in a four-dimensional space R^{4} with coordinates $x_{1}, x_{2}, y_{1}, y_{2}$. We consider in U a Hamiltonian system

$$
\begin{equation*}
x_{v}^{\prime}=H_{y_{v}}, y_{v} \cdot=-H_{x_{v}}(v=1,2) \tag{I}
\end{equation*}
$$

with real, analytic Hamiltonian function $H(z), z=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. We assume that:
system (1) has a fixed point z_{0} (i.e. $\operatorname{grad} H\left(z_{0}\right)=0$);
the matrix of a system linearized about the point z_{0} has eigenvalues $\alpha_{1},-\alpha_{1}, \alpha_{2},--\alpha_{2 l}$ where $\alpha_{1,2}>0, i=\sqrt{-1 ;}$ system (1) has a doubly asymptotic solution $z^{*}(t)$: $\lim z^{*}(t)=z_{0}$ as $t \rightarrow \pm \infty$.

Theorem。 A periodic solution of the system (l) exists in the phase space U in any neighborhood of the solution $z^{*}(t)$.

Proof. According to the Moser theorem (see/l,2/) a real analytic canonical change of variables $=\cdots(\xi), \xi=\left(\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}\right), \quad \Phi(0)=z_{0}$
exists in a sufficiently small neighborhood of the point z_{0}, which reduces (1) to the normal form

$$
\begin{aligned}
& \xi_{v}=F_{\eta_{v}}, \quad \eta_{v} \cdot=-F_{\xi v} \quad(v=1,2) \\
& F(\zeta)=H(\Phi(\zeta))-H\left(\tau_{0}\right)=F\left(\omega_{1}, \omega_{2}\right)=\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}+\ldots, \quad \omega_{1}: \xi_{1} \eta_{1}, \quad \omega_{2}=1_{2}\left(\xi_{2}^{2}+\eta_{2}^{2}\right)
\end{aligned}
$$

The system (2) is integrable, and we have

$$
\begin{aligned}
& \omega_{v}-\omega_{v}^{0}-\operatorname{const}(v=1,2), \quad \xi_{1}=\xi_{1}^{0} \exp \left[a_{1}\left(\omega^{\circ}\right) t\right], \quad \xi_{2}=\xi_{2}^{0} \cos a_{2}\left(\omega^{\circ}\right) t+\eta_{2}^{\circ} \sin a_{2}\left(\omega^{\circ}\right) t \\
& \eta_{1}=\eta_{1}^{\circ} \exp \left[-a_{1}\left(\omega^{\circ}\right) t\right], \quad \eta_{2}=-\xi_{2}^{\circ} \sin a_{2}\left(\omega^{\circ}\right) t+\eta_{2}^{\circ} \cos a_{2}\left(\omega^{\circ}\right) t, \quad a_{1}\left(\omega^{\circ}\right)=F_{\omega_{v}}\left(\omega^{\circ}\right), \quad \omega^{\circ} \ldots\left(\omega_{1}^{0}, \omega_{2}^{0}\right)
\end{aligned}
$$

The existence of a doubly asymptotic solution $z^{*}(t)$ means that a certain point $z_{1}-\Phi\left(\zeta_{1}\right)$, $\zeta_{1}=\left(\xi_{1}{ }^{*}, 0,0,0\right), \xi_{1}^{*} \neq 0$ will pass, under the action of the phase flux, to a point $z_{2} \ldots \varphi_{1}\left(\zeta_{2}\right), \xi_{2}=$ $\left(0, \eta_{1}{ }^{*}, 0,0\right), \eta_{1}{ }^{*} \neq 0$. Here $\left|\xi_{1}{ }^{*}\right|,\left|\eta_{1}{ }^{*}\right|$ can be taken arbitrarily small.

Let $\left|\xi_{1}{ }^{*}\right| \neq 0$ be sufficiently small. Then $\left.F_{n_{1}}\left(\xi_{1}\right): \alpha_{1} \xi_{1}^{*}\left\|_{1}\right\|_{\xi_{1}}{ }^{* 2}\right) \neq 0$ and using the theorem on the implicit function near the point π_{1} we can pass from the coordinates ζ to the coordinates $\xi_{1}, \xi_{2}, \eta_{2}, \chi=F(\zeta)=H(z)-H\left(z_{0}\right)$. Similarly, for sufficiently small $\left|\eta_{1}{ }^{*}\right| \neq 0$ we can pass, near the point z_{2}, from the coordinates to $\xi_{2}, \eta_{1}, \eta_{2}, \chi_{2}$

Let us consider the mapping $\varphi_{n}{ }^{1}$ of the two-dimensional area $s_{h^{1}}:\left\{\xi_{1}-\xi_{1}^{*}, \chi=4\right\}$ with coordinates ξ_{2}, η_{2} onto the two-dimensional area $S_{1}^{2}:\left\{\eta_{1}=\eta_{1}{ }^{*}, \chi-\bar{n}\right\}$ with coordinates ξ_{2}, η_{2} under the action of the phase flux. We denote $\left(\xi_{2}, \eta_{2}\right)=x$. Using the standard arguments we can show that the mapping $\varphi_{h}{ }^{1}(x)$ is analytic in h, x when $|h|,|x| ; \varphi_{0}{ }^{1}(0)=0$ are sufficiently small. On the other hand, in the circle $D_{h}:\left\{\omega_{2}<c|h|\right\}$ where $c>0$ is sufficiently small and $|\boldsymbol{h}| \neq 0$ are also sufficiently small and such that sign $h=\kappa=\operatorname{sign}\left(\xi_{1}{ }^{*} \eta_{1}{ }^{*}\right)$, the mapping $\varphi_{h}{ }^{2}: D_{h} \rightarrow S_{h}{ }^{1} \quad$ is defined according to the formulas (3) by

$$
\boldsymbol{\varphi}_{h}^{2}\left\|\begin{array}{c}
\check{y}_{2} \\
\eta_{2}
\end{array}\right\|=\left\|\begin{array}{c}
\xi_{2} \cos \theta\left(h, \omega_{2}\right)+\eta_{2} \sin \theta\left(h, \omega_{2}\right) \\
-\bar{\xi}_{2} \sin \theta\left(h, \omega_{2}\right) \\
\eta_{2} \cos \theta\left(h, \omega_{2}\right)
\end{array}\right\|, \quad \theta\left(h, \omega_{2}\right)-\frac{a_{2}\left(\omega_{1}\left(h, \omega_{2}\right), \omega_{2}\right)}{a_{1}\left(\omega_{1}\left(h, \omega_{2}\right), \omega_{2}\right)} \ln \frac{\xi_{1} * \eta_{1} *}{\omega_{1}\left(h, \omega_{2}\right)}
$$

[^0]where $\omega_{1}\left(h, \omega_{2}\right)=h / \alpha_{1}+O\left(h^{2}+\omega_{2}\right)$ is a solution of the equation $F\left(\omega_{1}, \omega_{2}\right)=h$ for ω_{1}, for small $\left|\omega_{1}\right|,|h|,\left|\omega_{2}\right|$, analytic in the neighborhood of $h=\omega_{2}=0$.

Thus for sufficiently small $|h| \neq 0, x h>0$ we obtain the mapping $\quad \varphi_{h}=\varphi_{h}{ }^{1} \varphi_{h}{ }^{2}: D_{h} \rightarrow D_{h}$. The fixed points

$$
\begin{equation*}
\varphi_{h}(x)=\varphi_{h}{ }^{\mathbf{1}} \varphi_{h}{ }^{2}(x)=x \tag{4}
\end{equation*}
$$

of this mapping have the corresponding periodic solutions of the system (1). To prove the theorem it is sufficient to construct a sequence $\left\{h_{n}\right\} \rightarrow 0$ such, that the corresponding sequence of solutions of (4) also $\left\{x_{n}=x\left(h_{n}\right)\right\} \rightarrow 0$.

Instead of (4), we shall now consider the equivalent equation

$$
\begin{equation*}
\varphi_{h}^{2}(x)=\left(\varphi_{h}^{1}\right)^{-1}(x) \tag{5}
\end{equation*}
$$

Substitution $x=\varepsilon \bar{x}, h=x \varepsilon^{2}$ reduces the equation (5) to the form

$$
\begin{equation*}
\Psi(\bar{x}, \varepsilon)=f(\bar{x}, \varepsilon, \theta(\varepsilon), \mu(\varepsilon))=0, \quad \theta(\varepsilon)=\theta\left(\mu \varepsilon^{2}, 0\right)=\frac{a_{2}}{a_{1}} \ln \frac{\left|\xi_{1} * \eta_{1}^{*}\right| a_{1}}{\varepsilon^{2}} \rightarrow \infty, \quad \varepsilon \rightarrow 0, \quad \mu(\varepsilon)=\varepsilon^{2} \theta(\varepsilon) \rightarrow 0, \quad \varepsilon \rightarrow 0 \tag{6}
\end{equation*}
$$

where the function $f(\bar{x}, \varepsilon, \theta, \mu)$ is analytic in $\bar{x}, \varepsilon, \theta$ and μ for sufficiently small $|\bar{x}|,|\varepsilon|,|\mu|$ and 2π-periodic in θ

$$
f(0,0, \theta, 0) \equiv 0, \frac{\partial \dot{f}}{\partial \bar{c}}(0,0, \theta, 0)=:-\quad\left\|\begin{array}{rr}
\cos \theta-a_{11} & \sin \theta-a_{12} \\
-\sin \theta-a_{21} & \cos \theta-a_{22}
\end{array}\right\|
$$

where $\left(a_{i j}\right)=A$ is the matrix of the linear part of the mapping $\left(\varphi_{0}{ }^{1}\right)^{-1}$ at the point $x=0$. When $\theta(\varepsilon)(\bmod 2 \pi)=\theta^{*}$ is fixed, we can write the equation (6) in the form of a system

$$
\begin{equation*}
f\left(\bar{x}, \varepsilon, \theta^{*}, \mu\right)=0, \quad \theta(\varepsilon)=\theta^{*}(\bmod 2 \pi), \mu=\mu(\varepsilon) \tag{7}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
\operatorname{det} \frac{\partial f}{\partial \bar{x}}\left(0,0, \theta^{*}, 0\right)=1+\operatorname{det} 1-\cos \theta^{*}\left(a_{11}+a_{22}\right)-\sin \theta^{*}\left(a_{12}-a_{21}\right) \neq 0 \tag{8}
\end{equation*}
$$

Then the first equation of (7) will be single valued for sufficiently small $|\bar{x}|,|e| .|\mu|$, and analytically solvable in $\bar{x}: \bar{x}=\bar{x}(\varepsilon, \mu)==O(|\varepsilon|+|\mu|)$. Choosing a sequence $\left\{\varepsilon_{n}\right\} \rightarrow 0$ satisfying the second equation of the system (7), $\mu=\mu\left(\varepsilon_{n}\right)$, we obtain a sequence of solutions of the
 ponding sequence of solutions of (5) $\left\{x_{n}=x\left(h_{n}\right)=\varepsilon_{n} \bar{x}_{n}\right\} \rightarrow 0$, QED.

Thus it remains to show that θ^{*} satisfying the condition (8) exists, This can be shown as follows. The canonical character of the system (1) implies that the mapping ($\left.\varphi_{h^{1}}\right)^{-1}$ preserves the oriented area $\int d \xi_{2} \wedge d \eta_{2}$, therefore $\operatorname{det} A=1$ and the inequality (8) has a solution in θ^{*}, which completes the proof of the theorem.

The author thanks M. L. Lidov for valuable assessments.

REFERENCES

1. MOSER, J. On the generalization of a theorem of A. Liapunoff. Communs Pure and Appl.Math., Vol.11,No. 4, 1958.
2. BRIUNO, A. D. Analytic form of differential equations. Tr. Moscow, matem. o-va, Vol. 26, 1972.

[^0]: * Prikl.Matem.Mekhan. ,44,No.2,358-360,1980
 **) See Lidov, M. T. and Vashkov'iak, M. A. Doubly asymptotic symmetric orbits in the p lane, bounded circular three-body problem. Moscow, Preprint In-ta prikl.matem. Akad. Nauk SSSR, No. 15,1975. The solution is called doubly asymptotic with respect to a fixed point if it tends to this point as $t \rightarrow \pm \infty$.

