UDC 531.55:521.1

(1)

(3)

ON PERIODIC ALMOST DOUBLY ASYMPTOTIC SOLUTIONS OF THE BOUNDED CIRCULAR THREE-BODY PROBLEM*

S. L. ZIGLIN

In the course of investigating by numerical integration methods the solutions of the bounded, circular three-body problem doubly asymptotic with respect to the rectilinear libration points $L_{1,2,3}$. it was found that a periodic solution always exists near the doubly asymptotic solution, and a problem of establishing an analytic relationship between such solutions was therefore formulated (**).

Below, a theorem is proved from which it follows that a periodic solution exists in any neighborhood of a solution of the bounded, circular three-body problem, doubly asymptotic with respect to the rectilinear libration point.

Let U be a region in a four-dimensional space R^4 with coordinates x_1, x_2, y_1, y_2 . We consider in U a Hamiltonian system

 $x_{v} = H_{y_{v}}, \ y_{v} = -H_{x_{v}} (v = 1, 2)$

with real, analytic Hamiltonian function H(z), $z = (x_1, x_2, y_1, y_2)$. We assume that: system (1) has a fixed point z_0 (i.e. grad $H(z_0) = 0$);

the matrix of a system linearized about the point z_0 has eigenvalues $\alpha_1, -\alpha_1, \alpha_2 i, -\alpha_2 i$ where $\alpha_{1,2} > 0$, $i = \sqrt{-1}$; system (1) has a doubly asymptotic solution $z^*(t)$: $\lim z^*(t) = z_0$ as $t \to \pm \infty$.

Theorem. A periodic solution of the system (1) exists in the phase space U in any neighborhood of the solution $z^*(t)$.

Proof. According to the Moser theorem (see /1,2/) a real analytic canonical change of variables $z = \Phi(\zeta), \ \zeta = (\xi_1, \xi_2, \eta_1, \eta_2), \ \Phi(0) = z_0$

exists in a sufficiently small neighborhood of the point z_0 , which reduces (1) to the normal form

$$\xi_{v} = F_{\eta_{v}}, \quad \eta_{v} = -F_{\xi_{v}} \quad (v = 1, 2)$$
(2)

 $F(\zeta) = H(\Phi(\zeta)) - H(z_0) = F(\omega_1, \omega_2) = \alpha_1 \omega_1 + \alpha_2 \omega_2 + \dots, \qquad \omega_1 = \xi_1 \eta_1, \quad \omega_2 = \frac{1}{2} (\xi_2^2 + \eta_2^2)$

The system (2) is integrable, and we have

 $\omega_{\gamma} = \omega_{\gamma}^{\circ} = \text{const} \ (\nu = 1, 2), \qquad \xi_1 = \xi_1^{\circ} \exp [a_1(\omega^{\circ})t], \quad \xi_2 = \xi_2^{\circ} \cos a_2(\omega^{\circ})t + \eta_2^{\circ} \sin a_2(\omega^{\circ})t$

 $\eta_1 = \eta_1^\circ \exp\left[-a_1\left(\omega^\circ\right)t\right], \quad \eta_2 = -\xi_2^\circ \sin a_2\left(\omega^\circ\right)t + \eta_2^\circ \cos a_2\left(\omega^\circ\right)t, \quad a_{\chi}\left(\omega^\circ\right) = F_{\omega_{\chi}}\left(\omega^\circ\right), \quad \omega^\circ = (\omega_1^\circ, \omega_2^\circ)$

The existence of a doubly asymptotic solution $z^*(t)$ means that a certain point $z_1 = \Phi(\zeta_1)$, $\zeta_1 = (\xi_1^*, 0, 0, 0), \xi_1^* \neq 0$ will pass, under the action of the phase flux, to a point $z_2 = \Phi(\zeta_2), \zeta_2 = (0, \eta_1^*, 0, 0), \eta_1^* \neq 0$. Here $|\xi_1^*|, |\eta_1^*|$ can be taken arbitrarily small.

Let $|\xi_1^*| \neq 0$ be sufficiently small. Then $F_{\eta_1}(\zeta_1) = \alpha_1 \xi_1^* + O(\xi_1^{*2}) \neq 0$ and using the theorem on the implicit function near the point z_1 we can pass from the coordinates ζ to the coordinates $\xi_1, \xi_2, \eta_2, \chi \equiv F(\zeta) \equiv H(z) - H(z_0)$. Similarly, for sufficiently small $|\eta_1^*| \neq 0$ we can pass, near the point z_2 , from the coordinates ζ to $\xi_2, \eta_1, \eta_2, \chi$.

Let us consider the mapping φ_h^{-1} of the two-dimensional area $S_h^{-1}: \{\xi_1 = \xi_1^*, \chi = h\}$ with coordinates ξ_2, η_2 onto the two-dimensional area $S_h^2: \{\eta_1 = \eta_1^*, \chi = h\}$ with coordinates ξ_2, η_2 under the action of the phase flux. We denote $(\xi_2, \eta_2) = x$. Using the standard arguments we can show that the mapping $\varphi_h^{-1}(x)$ is analytic in h, x when $\{h\}, \|x\|; \varphi_0^{-1}(0) = 0$ are sufficiently small. On the other hand, in the circle $D_h: \{\omega_2 < c \mid h\}$ where c > 0 is sufficiently small and $\|h\| \neq 0$ are also sufficiently small and such that $\operatorname{sign} h = x = \operatorname{sign}(\xi_1^* \eta_1^*)$, the mapping $\varphi_h^2: D_h \to S_h^{-1}$ is defined according to the formulas (3) by

$$\left\| \left\| \frac{\xi_2}{\eta_2} \right\| = \left\| \frac{\xi_2 \cos \theta \left(h, \omega_2\right) + \eta_2 \sin \theta \left(h, \omega_2\right)}{-\xi_2 \sin \theta \left(h, \omega_2\right) + \eta_2 \cos \theta \left(h, \omega_2\right)} \right\|, \qquad \theta \left(h, \omega_2\right) = \frac{a_2 \left(\omega_1 \left(h, \omega_2\right), \omega_2\right)}{a_1 \left(\omega_1 \left(h, \omega_2\right), \omega_2\right)} \ln \frac{\xi_1 * \eta_1 * \omega_2 + \eta_2 \cos \theta \left(h, \omega_2\right)}{\omega_1 \left(h, \omega_2\right) + \eta_2 \cos \theta \left(h, \omega_2\right)} \right\|, \qquad \theta \left(h, \omega_2\right) = \frac{a_2 \left(\omega_1 \left(h, \omega_2\right), \omega_2\right)}{a_1 \left(\omega_1 \left(h, \omega_2\right), \omega_2\right)} \ln \frac{\xi_1 * \eta_1 * \omega_2}{\omega_1 \left(h, \omega_2\right)} \right\|,$$

^{*} Prikl.Matem.Mekhan.,44,No.2,358-360,1980

^{**)} See Lidov, M. L. and Vashkov'iak, M. A. Doubly asymptotic symmetric orbits in the plane, bounded circular three-body problem. Moscow, Preprint In-ta prikl.matem.Akad.Nauk SSSR, No.15,1975. The solution is called doubly asymptotic with respect to a fixed point if it tends to this point as $t \to \pm \infty$.

where $\omega_1(h, \omega_2) = h / \alpha_1 + O(h^2 + \omega_2)$ is a solution of the equation $F(\omega_1, \omega_2) = h$ for ω_1 , for small $|\omega_1|, |h|, |\omega_2|$, analytic in the neighborhood of $h = \omega_2 = 0$.

Thus for sufficiently small $|h| \neq 0$, $\varkappa h > 0$ we obtain the mapping $\varphi_h = \varphi_h^1 \varphi_h^2 : D_h \to D_h$. The fixed points

$$\varphi_h(x) = \varphi_h^1 \varphi_h^2(x) = x \tag{4}$$

of this mapping have the corresponding periodic solutions of the system (1). To prove the theorem it is sufficient to construct a sequence $\{h_n\} \to 0$ such, that the corresponding sequence of solutions of (4) also $\{x_n = x \ (h_n)\} \to 0$.

Instead of (4), we shall now consider the equivalent equation

$$\varphi_h^2(x) = (\varphi_h^1)^{-1}(x)$$

Substitution $x = \varepsilon \overline{x}, h = x\varepsilon^2$ reduces the equation (5) to the form

$$\Psi\left(\bar{x},\varepsilon\right) = f\left(\bar{x},\varepsilon,\theta\left(\varepsilon\right),\ \mu\left(\varepsilon\right)\right) = 0, \quad \theta\left(\varepsilon\right) = \theta\left(\varkappa\varepsilon^{2},0\right) = \frac{\alpha_{2}}{\alpha_{1}}\ln\frac{\left|\xi_{1}\ast\eta_{1}\ast\right|\alpha_{1}}{\varepsilon^{2}} \to \infty, \quad \varepsilon \to 0, \quad \mu\left(\varepsilon\right) = \varepsilon^{2}\theta\left(\varepsilon\right) \to 0, \quad \varepsilon \to 0 \quad (6)$$

where the function $f(\bar{x}, \varepsilon, \theta, \mu)$ is analytic in $\bar{x}, \varepsilon, \theta$ and μ for sufficiently small $|\bar{x}|, |\varepsilon|, |\mu|$ and 2π -periodic in θ

$$f(\mathbf{0}, 0, \mathbf{\theta}, 0) \equiv 0, \ \frac{\partial f}{\partial \overline{z}}(\mathbf{0}, 0, \mathbf{\theta}, 0) = \left\| \begin{array}{c} \cos \theta - a_{11} & \sin \theta - a_{12} \\ -\sin \theta - a_{21} & \cos \theta - a_{22} \end{array} \right\|$$

where $(a_{ij}) = A$ is the matrix of the linear part of the mapping $(\varphi_0^{1})^{-1}$ at the point x = 0. When $\theta(\varepsilon) \pmod{2\pi} = \theta^*$ is fixed, we can write the equation (6) in the form of a system

$$f(\bar{x}, \varepsilon, \theta^*, \mu) = 0, \quad \theta(\varepsilon) = \theta^* \pmod{2\pi}, \quad \mu = \mu(\varepsilon)$$
⁽⁷⁾

Let us assume that

$$\det \frac{\partial f}{\partial \bar{x}}(0, 0, \theta^*, 0) = 1 + \det A - \cos \theta^* (a_{11} + a_{22}) - \sin \theta^* (a_{12} - a_{21}) \neq 0$$
(8)

Then the first equation of (7) will be single valued for sufficiently small $|\bar{x}|, |\epsilon|, |\mu|$, and analytically solvable in $\bar{x}: \bar{x} = \bar{x} (\epsilon, \mu) = O(|\epsilon| + |\mu|)$. Choosing a sequence $\{\epsilon_n\} \to 0$ satisfying the second equation of the system (7), $\mu = \mu (\epsilon_n)$, we obtain a sequence of solutions of the system (7) $\{\bar{x}_n = \bar{x} (\epsilon_n, \mu (\epsilon_n))\} \to 0$. From this we find that the sequence $\{h_n = \varkappa \epsilon_n^2\} \to 0$ has a corresponding sequence of solutions of (5) $\{x_n = x (h_n) = \epsilon_n \bar{x}_n\} \to 0$, QED.

Thus it remains to show that θ^* satisfying the condition (8) exists. This can be shown as follows. The canonical character of the system (1) implies that the mapping $(\varphi_h)^{-1}$ preserves the oriented area $\int d\xi_2 \wedge d\eta_2$, therefore $\det A = 1$ and the inequality (8) has a solution in θ^* , which completes the proof of the theorem.

The author thanks M. L. Lidov for valuable assessments.

REFERENCES

- MOSER, J. On the generalization of a theorem of A. Liapunoff. Communs Pure and Appl.Math., Vol.11,No.4, 1958.
- BRIUNO, A. D. Analytic form of differential equations. Tr. Moscow, matem. o-va, Vol.26, 1972.

Translated by L.K.

(5)